ON A GENERALIZATION OF BEITER CONJECTURE

BARTŁOMIEJ BZDĘGA

ABSTRACT. We prove that for every $\varepsilon > 0$ and a nonnegative integer ω there exist primes $p_1, p_2, \ldots, p_\omega$ such that for $n = p_1 p_2 \ldots p_\omega$ the height of the cyclotomic polynomial Φ_n is at least $(1 - \varepsilon)c_\omega M_n$, where $M_n = \prod_{i=1}^{\omega-2} p_i^{2^{\omega-1-i}-1}$ and c_ω is a constant depending only on ω ; furthermore $\lim_{\omega\to\infty} c_\omega^{2^{-\omega}} \approx 0.71$. In our construction we can have $p_i > h(p_1 p_2 \ldots p_{i-1})$ for all $i = 1, 2, \ldots, \omega$ and any function $h : \mathbb{R}_+ \to \mathbb{R}_+$.

1. INTRODUCTION

Let Φ_n be the *n*th cyclotomic polynomial, i.e. the unique monic polynomial irreducible over integers, which roots are all primitive *n*th roots of unity. We assume that $n = p_1 p_2 \dots p_{\omega}$ and $2 < p_1 < p_2 < \dots < p_{\omega}$ are primes, since $\Phi_{2n}(x) = \Phi_n(-x)$ for odd *n* and $\Phi_{np}(x) = \Phi_n(x^p)$ for a prime *p* dividing *n*. We call the number $\omega = \omega(n)$ the order of Φ_n .

Let A_n denotes the maximal absolute value of a coefficient of Φ_n . We say shortly that A_n is the height of Φ_n . In case of $\omega \in \{0, 1, 2\}$ determining of A_n is easy and we have $A_1 = A_{p_1} = A_{p_1p_2} = 1$. For $\omega = 3$ it is known that $A_{p_1p_2p_3} \leq \frac{3}{4}p_1$ [1]. The Corrected Beiter Conjecture states that $A_{p_1p_2p_3} \leq \frac{2}{3}p_1$ (see [4] and references given there for details). The constant $\frac{2}{3}$ is best possible if the conjecture is true.

For cyclotomic polynomials of any order we put

$$M_n = \prod_{i=1}^{\omega-2} p_i^{2^{\omega-1-i}-1},$$

where the empty product, which happens if $\omega \leq 2$, equals 1. P.T. Bateman, C. Pomerance and R.C. Vaughan proved in [2] that $A_n \leq M_n$. In [3] the author proved that $A_n \leq C_{\omega}M_n$, where $C_{\omega}^{2^{-\omega}}$ converges to approximately 0.95 with $\omega \to \infty$. However, so far we have known no good general class of Φ_n for which A_n is close to $C_{\omega}M_n$.

It has not been even known if M_n gives the optimal order for the upper bound on A_n . For example we have $A_{p_1...p_5} \leq C_5 p_1^7 p_2^3 p_3$, but we did not know whether $A_{p_1...p_5} \leq C'_5 p_1^8 p_2^2 p_3$ for some other constant C'_5 . All known constructions of Φ_n with large height required that most prime factors of nare of almost the same size.

¹⁹⁹¹ Mathematics Subject Classification. 11B83, 11C08.

Key words and phrases. cyclotomic polynomial, coefficients, height of a polynomial.

BARTŁOMIEJ BZDĘGA

One of the main purposes of this paper is to show that M_n is optimal, i.e. in the upper bound on A_n it cannot be replaced by any smaller product of the form $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_{\omega}^{\alpha_{\omega}}$ in a sense which we describe below.

For a fixed ω we define the following strict lexicographical order on \mathbb{R}^{ω} :

$$(\alpha_1, \alpha_2, \dots, \alpha_{\omega}) \prec (\beta_1, \beta_2, \dots, \beta_{\omega})$$

$$\iff \alpha_{\omega} = \beta_{\omega}, \alpha_{\omega-1} = \beta_{\omega-1}, \dots, \alpha_{k+1} = \beta_{k+1} \text{ and } \alpha_k < \beta_k \text{ for some } k \le \omega.$$

For $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{\omega})$ and $n = p_1 p_2 \dots p_{\omega}$ we put $M_n^{(\alpha)} = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_{\omega}^{\alpha_{\omega}}$. Note that if $\alpha \prec \beta$ and p_i is large enough compared to $p_1 p_2 \dots p_{i-1}$ for all $i \leq \omega$, then $M_n^{(\alpha)} < M_n^{(\beta)}$.

Therefore, we say that $M_n^{(\alpha)}$ is the optimal bound on A_n for a fixed ω if there exists a constant b_{ω} such that $A_n \leq b_{\omega} M_n^{(\alpha)}$ for all n with $\omega(n) = \omega$ and α is smallest possible in sense of the order \prec .

It requires an explanation what it means that p_i is large enough compared to $p_1p_2 \ldots p_{i-1}$ for all $i \leq \omega$. Let $h : \mathbb{R}_+ \to \mathbb{R}_+$ be any function, preferably growing fast. We say that a sequence of primes $p_1, p_2, \ldots, p_\omega$ is *h*-growing if $p_i \geq h(p_1p_2 \ldots p_{i-1})$ for $i = 1, 2, \ldots, \omega$ (empty product equals 1). With a small abuse of notation we will also write that the number $n = p_1p_2 \ldots p_\omega$ is *h*-growing.

The following theorem is the main result of this paper.

Theorem 1. For every $\omega \geq 3$, $\varepsilon > 0$ and $h : \mathbb{R}_+ \to \mathbb{R}_+$ there exists an *h*-growing $n = p_1 p_2 \dots p_\omega$ such that $A_n > (1 - \varepsilon) c_\omega M_n$, where

$$M_n = \prod_{i=1}^{\omega-2} p_i^{2^{\omega-1-i}-1} \quad and \quad c_\omega = \frac{1}{\omega} \cdot \left(\frac{2}{\pi}\right)^{3 \cdot 2^{\omega-3}} \cdot \left(\prod_{k=3}^{\omega-1} k^{2^{\omega-1-k}}\right)^{-1}.$$

By this theorem and the already mentioned result from [3], M_n is the optimal bound on A_n . Furthermore

$$\lim_{\omega \to \infty} c_{\omega}^{2^{-\omega}} = \left(\frac{2}{\pi}\right)^{3/8} \cdot \prod_{k=3}^{\infty} k^{-2^{-k-1}} \approx 0.71.$$

Let us define the ω th Beiter constant in the following natural way:

$$B_{\omega} = \limsup_{\omega(n)=\omega} (A_n/M_n).$$

For example we know that $B_0 = B_1 = B_2 = 1$ and $\frac{2}{3} \le B_3 \le \frac{3}{4}$. If Corrected Beiter Conjecture is true, then $B_3 = \frac{2}{3}$.

For all ω we have

$$c + o(1) < B_{\omega}^{2^{-\omega}} < C + o(1), \quad \omega \to \infty$$

with $c \approx 0.71$ and $C \approx 0.95$. It would be interesting to know the asymptotics of B_{ω} . For example, we expect that the following natural conjecture is true.

Conjecture 2. There exists a limit $\lim_{\omega\to\infty} B_{\omega}^{2^{-\omega}}$.

2. Preliminaries and binary case

Let us define the value

$$L_n = \max_{|z|=1} |\Phi_n(z)|.$$

It was already considered by several authors [2, 5, 6] while estimating A_n . If S_n denotes the sum of absolute values of the coefficients of Φ_n , then for n > 1

$$A_n \ge \frac{S_n}{\deg \Phi_n + 1} \ge \frac{L_n}{n}.$$

We express $|\Phi_n(z)|$ as a real function of $x = \arg(z)$ for |z| = 1. For all $n \ge 1$ let

$$F_n(x) = \prod_{d|n} \left(\sin\frac{d}{2}x\right)^{\mu(n/d)}$$

where we put $\frac{\sin ax}{\sin bx} = \frac{a}{b}$ for $\sin bx = \sin ax = 0$. Note that F_n is periodic with the period 2π . By the following lemma $F_n(x)$ is well defined for all $x \in \mathbb{R}$.

Lemma 3. For n > 1 we have $|\Phi_n(e^{ix})| = |F_n(x)|$.

Proof. By elementary computations $|1 - z| = 2 |\sin \frac{1}{2}x|$. Then we use the well known Moebius formula $\Phi_n(z) = \prod_{d|n} (1 - z^d)^{\mu(n/d)}$. Note that $\Phi_n(e^{ix})$ is a bounded continuous function of x, so if the product $F_n(x_0)$ is not defined for some x_0 (which happens only for finitely many values of $0 \le x_0 < 2\pi$), then we can replace it by its limit with $x \to x_0$.

By Lemma 3 we have

$$L_n = \max_{|z|=1} |\Phi_n(z)| = \max_{0 \le x < 2\pi} |F_n(x)|$$

as long as n > 1. Furthermore $|F_1(x)| = \frac{1}{2} |\Phi_1(e^{ix})|$. It is easy to determine $L_1 = 1$ and $L_{p_1} = p_1$. Let us consider the case $\omega = 2.$

Theorem 4. Let $p_1 < p_2$ be primes and let a be the unique integer such that $p_1 \mid p_2 + 2a$ and $|a| < p_1/2$. Then $L_{p_1p_2} \ge \frac{4(p_1-2)p_2}{\pi^2 |2a+1|}$

Proof. Put $x = \left(1 + \frac{1}{p_1} + \frac{2a+1}{p_1p_2}\right) \pi$. Then

$$\begin{vmatrix} \sin \frac{p_1 p_2 x}{2} \end{vmatrix} = \left| \sin \frac{p_1 p_2 + p_2 + 2a + 1}{2} \pi \right| = 1, \\ \left| \sin \frac{x}{2} \right| = \left| \cos \left(\frac{1}{2p_1} + \frac{2a + 1}{2p_1 p_2} \right) \pi \right| \ge 1 - \frac{1}{p_1} - \frac{|2a + 1|}{p_1 p_2} \ge 1 - \frac{2}{p_1}, \end{aligned}$$

BARTŁOMIEJ BZDĘGA

where we used the inequality $\cos t \ge 1 - \frac{2}{\pi} \cdot |t|$ for $|t| \le \pi/2$. Furthermore

$$\left|\sin\frac{p_1x}{2}\right| = \left|\sin\left(\frac{p_1+1}{2} + \frac{2a+1}{2p_2}\right)\pi\right| = \left|\sin\frac{2a+1}{2p_2}\pi\right| \le \frac{|2a+1|\pi|}{2p_2},$$
$$\left|\sin\frac{p_2x}{2}\right| = \left|\sin\left(\frac{p_2}{2} + \frac{p_2+2a}{2p_1} + \frac{1}{2p_1}\right)\pi\right| = \left|\sin\frac{\pi}{2p_1}\right| \le \frac{\pi}{2p_1},$$

where we used the inequality $|\sin t| \le |t|$ for $t \in \mathbb{R}$. By the above inequalities we obtain

$$L_{p_1p_2} \ge F_{p_1p_2}(x) = \left| \frac{\sin(x/2)\sin(p_1p_2x/2)}{\sin(p_1x/2)\sin(p_2x/2)} \right| \ge \frac{4(p_1-2)p_2}{\pi^2|2a+1|},$$

as desired.

3. Derivative of F_n

It is not difficult to prove that F_n is a differentiable function. Let $f_n(x)$ be the derivative of $F_n(x)$. The function f_n plays a crucial role in our construction of n with large L_n , especially its minimal absolute values in points x_0 for which $F_n(x_0) = 0$. Let

$$D_n = \min_{x_0: F_n(x_0) = 0} |f_n(x_0)|.$$

The aim of this section is to prove the following theorem.

Theorem 5. For all positive integers ω and all $\varepsilon > 0$ there exists a function $h_{\omega,\varepsilon} : \mathbb{R}_+ \to \mathbb{R}_+$ depending only on ω and ε , such that

$$\frac{n}{2} \cdot (L_{p_1} L_{p_1 p_2} \dots L_{p_1 p_2 \dots p_{\omega-1}})^{-1} \le D_n < (1+\varepsilon) \frac{n}{2} \cdot (L_{p_1} L_{p_1 p_2} \dots L_{p_1 p_2 \dots p_{\omega-1}})^{-1}$$

for all $h_{\omega,\varepsilon}$ -growing $n = p_1 p_2 \dots p_{\omega}$.

In order to prove this theorem we will need some lemmas.

Lemma 6. If $F_n(x_0) = 0$, then

$$|f_n(x_0)| = \frac{n}{2} \prod_{d|n, d \neq n} \left| \sin \frac{d}{2} x_0 \right|^{\mu(n/d)}.$$

Proof. Since $x_0 = \frac{2t_0\pi}{n}$ with some integer t_0 coprime to n, we have

$$f_n(x_0) = \lim_{\epsilon \to \infty} \frac{1}{\epsilon} \prod_{d|n} \left(\sin \frac{d}{2} (x_0 + \epsilon) \right)^{\mu(n/d)}$$
$$= \lim_{\epsilon \to \infty} \frac{\sin(t_0 \pi + n\epsilon/2)}{\epsilon} \prod_{d|n, d \neq n} \left(\sin \frac{d}{2} (x_0 + \epsilon) \right)^{\mu(n/d)}$$
$$= \pm \frac{n}{2} \prod_{d|n, d \neq n} \left(\sin \frac{d}{2} x_0 \right)^{\mu(n/d)},$$

as desired.

Lemma 7. Let p be a prime not dividing n. If $F_{np}(x_1) = 0$, then $f_{np}(x_1) = \frac{p|f_n(x_1p)|}{|F_n(x_1)|}$.

Proof. By Lemma 6

$$|f_{np}(x_1)| = \frac{np}{2} \prod_{d|np, \ d \neq np} \left| \sin \frac{d}{2} x_1 \right|^{\mu(np/d)}$$
$$= \frac{np}{2} \cdot \left(\prod_{d|n} \left| \sin \frac{d}{2} x_1 \right|^{\mu(n/d)} \right)^{-1} \cdot \left(\prod_{d|n, \ d \neq n} \left| \sin \frac{dp}{2} x_1 \right|^{\mu(n/d)} \right)$$
$$= \frac{np}{2} \cdot |F_n(x_1)|^{-1} \cdot \frac{2}{n} \cdot |f_n(px_1)| = \frac{p|f_n(px_1)|}{|F_n(x_1)|},$$

which completes the proof.

Lemma 8. We have $D_{np} \geq p \cdot \frac{D_n}{L_n}$. Moreover, for all $\varepsilon > 0$ there exists a function $h_{\varepsilon} : \mathbb{R}_+ \to \mathbb{R}_+$ depending only on ε , such that $D_{np} < (1+\varepsilon) \cdot p \cdot \frac{D_n}{L_n}$ for all $p > h_{\varepsilon}(n)$.

Proof. Let x_0 and x_1 be such that $F_n(x_0) = F_{np}(x_1) = 0$, $|f_n(x_0)| = D_n$ and $|f_{np}(x_1)| = D_{np}$. Since $x_1 = \frac{2t_1\pi}{np}$ for some t_1 coprime to np, we have $px_1 = \frac{2t_1\pi}{n}$. Therefore $F_n(px_1) = 0$ and hence $|f_p(px_1)| \ge D_n$. By applying this inequality and Lemma 7 we obtain

$$D_{np} = |f_{np}(x_1)| = \frac{p|f_n(px_1)|}{|F_n(x_1)|} \ge p \cdot \frac{D_n}{L_n}.$$

For obtaining the opposite inequality, let $x_0 = \frac{2t_0\pi}{n}$ and $x'_1 = \frac{x_0+2t\pi}{p} = \frac{2(t_0+tn)\pi}{np}$ with any $t \not\equiv -\frac{t_0}{n} \pmod{p}$. Then $F_{np}(x'_1) = 0$ and $f_n(px'_1) = D_n$. Again by Lemma 7

$$D_{np} \le |f_{np}(x_1')| = \frac{p|f_n(px_1')|}{|F_n(x_1')|} = p \cdot \frac{D_n}{\left|F_n\left(\frac{x_0 + 2t\pi}{p}\right)\right|}$$

By choosing an appropriate t we can have $\left|F_n\left(\frac{x_0+2t\pi}{p}\right)\right|$ as close to L_n as we wish when $p \to \infty$.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 5. Let $\varepsilon > 0$ be fixed and let $\varepsilon' = \sqrt[\omega]{1+\varepsilon} - 1$. Let $h_{\varepsilon'}$ be a function given by Lemma 8, which implies that if $n = p_1 p_2 \dots p_{\omega}$ is $h_{\varepsilon'}$ -growing, then

$$p_i \cdot \frac{D_{p_1 p_2 \dots p_{i-1}}}{L_{p_1 p_2 \dots p_{i-1}}} \le D_{p_1 p_2 \dots p_i} < (1+\varepsilon')p_i \cdot \frac{D_{p_1 p_2 \dots p_{i-1}}}{L_{p_1 p_2 \dots p_{i-1}}}$$

for $i = 1, 2..., \omega$ (empty product equals 1). By these inequalities

$$\frac{nD_1}{L_1L_{p_1}L_{p_1p_2}\dots L_{p_1p_2\dots p_{\omega-1}}} \le D_n < (1+\varepsilon')^{\omega} \frac{nD_1}{L_1L_{p_1}L_{p_1p_2}\dots L_{p_1p_2\dots p_{\omega-1}}}$$

BARTŁOMIEJ BZDĘGA

Note that $(1 + \varepsilon')^{\omega} = 1 + \varepsilon$, $L_1 = 1$ and $D_1 = \frac{1}{2}$. So the theorem holds with the function $h_{\omega,\varepsilon} = h_{\varepsilon'} = h_{\sqrt[\infty]{1+\varepsilon}-1}$, which clearly depends only on ω and ε .

4. Proof of main result

In the following lemma we give a lower bound on L_{np} which depends on the residue class of p modulo n.

Lemma 9. Let $\varepsilon > 0$ and $n = p_1 p_2 \dots p_{\omega}$ be fixed. Put $x_M \in [0, 2\pi)$ such that $F_n(x_M) = L_n$ and $x_0 = \frac{2t_0\pi}{n}$ for which $F_n(x_0) = 0$ and $|f_n(x_0)| = D_n$. Let $b = \min_{k \in \mathbb{Z}} \left| \frac{nx_M}{2\pi} - pt_0 + nk \right|$. Then

$$L_{np} > (1 - \varepsilon)L_n \cdot \frac{np}{2b\pi D_n}$$

for every p large enough. Furthermore, if $p_1 > \omega$ and r is an integer coprime to n such that $\left|\frac{nx_M}{2\pi} - r\right|$ is smallest possible, then

$$L_{np} > (1-\varepsilon)L_n \cdot \frac{1}{\pi(\omega+1)} \cdot \frac{np}{D_n}$$

for every sufficiently large $p \equiv \frac{r}{t_0} \pmod{n}$.

Proof. We have $F_n(x) = \frac{F_n(px)}{F_n(x)}$, so

$$L_{np} = \max_{0 \le x < 2\pi} \left| \frac{F_n(px)}{F_n(x)} \right| \ge \max_{k \in \mathbb{Z}} \frac{|F_n(x_M + 2k\pi)|}{\left| F_n\left(\frac{x_M + 2k\pi}{p}\right) \right|} = \frac{L_n}{\min_{k \in \mathbb{Z}} \left| F_n\left(\frac{x_M + 2k\pi}{p}\right) \right|}$$

Let k_0 be a integer for which $\left|\frac{x_M+2k_0\pi}{p}-x_0\right|$ is smallest possible. Then

$$\begin{split} \min_{k \in \mathbb{Z}} \left| F_n\left(\frac{x_M + 2k\pi}{p}\right) \right| &\leq \left| F_n\left(\frac{x_M + 2k_0\pi}{p}\right) \right| \\ &\sim \left| f_n(x_0) \right| \cdot \left| \frac{x_M + 2k_0\pi}{p} - x_0 \right| \quad (\text{with } p \to \infty) \\ &= D_n \cdot \frac{2\pi}{np} \cdot \left| \frac{nx_M}{2\pi} - t_0 p + k_0 n \right| \\ &= D_n \cdot \frac{2b\pi}{np}. \end{split}$$

Therefore

$$L_{np} > (1+o(1))\frac{L_n}{D_n \cdot \frac{2b\pi}{np}} \sim L_n \cdot \frac{np}{2b\pi D_n}$$

with $p \to \infty$, which completes the proof of the first statement. For $p \equiv \frac{r}{t_0} \pmod{n}$ we have

$$b = \min_{k \in \mathbb{Z}} \left| \frac{nx_M}{2\pi} - pt_0 + nk \right| = \left| \frac{nx_M}{2\pi} - r \right| \le \frac{\omega + 1}{2}$$

since, in view of $p_1 > \omega$, at most ω consecutive integers are not coprime to p.

Simple calculations show that Theorem 4 gives a better lower bound for $L_{p_1p_2}$ than Lemma 9. Therefore we use Theorem 4 in the proof of the main result. By the fact that $A_n \ge L_n/n$ for n > 1, Theorem 1 is an immediate consequence of the following theorem.

Theorem 10. For every $\omega \geq 3$, $\varepsilon > 0$ and $h : \mathbb{R}_+ \to \mathbb{R}_+$ there exists an *h*-growing $n = p_1 p_2 \dots p_{\omega}$ such that $L_n > (1 - \varepsilon) c_{\omega} n M_n$, where c_{ω} and M_n are defined in Theorem 1.

Proof. We prove this by a strong induction on $\omega = \omega(n)$. The induction starts with $\omega = 2$.

Our inductive assumption is that for all $\varepsilon' > 0$ and a function $h : \mathbb{R}_+ \to \mathbb{R}_+$ there exists an *h*-growing $n = p_1 p_2 \dots p_\omega$ such that $L_{p_1 p_2} > (1 - \varepsilon') \frac{4}{\pi^2} p_1 p_2$ and $L_{p_1 p_2 \dots p_i} > (1 - \varepsilon') c_i p_1 p_2 \dots p_i M_{p_1 p_2 \dots p_i}$ for $3 \le i \le \omega$. By Theorem 4 it is true for $\omega = 2$ with $p_1 \mid q_1 - 2$ (note that the second part of the inductive assumption is empty when $\omega = 2$).

Now we show the inductive step. Let $\omega \geq 2$. Without loss of generality we may assume that $h(1) \geq \omega$. By Lemma 9 and Dirichlet's theorem on primes in arithmetic progressions, there exists $p_{\omega+1} > h(p_1p_2 \dots p_{\omega})$ for which

$$L_{p_1p_2\dots p_{\omega+1}} > (1-\varepsilon')L_n \cdot \frac{np_{\omega+1}}{\pi(\omega+1)D_n}$$

By Theorem 5 there exists a function $h_1 : \mathbb{R}_+ \to \mathbb{R}_+$ depending only on ω and ε' , such that for all h_1 -growing n

$$D_n > (1 - \varepsilon')^{-1} \frac{n}{2} \cdot \frac{1}{L_{p_1} L_{p_1 p_2} \dots L_{p_1 p_2 \dots p_\omega}}.$$

Again without loss of generality we can assume that $h(x) > h_1(x)$ for all $x \in \mathbb{R}_+$. In this situation all *h*-growing numbers are also h_1 -growing, so the above inequality holds for every *h*-growing *n*.

For given $\varepsilon > 0$ we choose $\varepsilon' = 1 - \sqrt[\omega+1]{1-\varepsilon}$. By the above inequalities and the inductive assumption

$$L_{p_{1}p_{2}...p_{\omega+1}} > (1 - \varepsilon')^{2} \cdot \frac{2p_{\omega+1}}{\pi(\omega+1)} \cdot L_{p_{1}}L_{p_{1}p_{2}}...L_{p_{1}p_{2}...p_{\omega}}$$

> $(1 - \varepsilon')^{\omega+1} \cdot \frac{2p_{\omega+1}}{\pi(\omega+1)} \cdot p_{1} \cdot \frac{4}{\pi^{2}}p_{1}p_{2} \cdot \prod_{i=3}^{\omega} (c_{i}p_{1}p_{2}...p_{i}M_{p_{1}p_{2}...p_{i}})$
= $(1 - \varepsilon) \left(\frac{8}{\pi^{3}(\omega+1)} \cdot \prod_{i=3}^{\omega} c_{i} \right) \left(p_{\omega+1} \prod_{i=1}^{\omega} (p_{1}p_{2}...p_{i}M_{p_{1}p_{2}...p_{i}}) \right).$

The exponent of p_k in $\prod_{i=1}^{\omega} (p_1 p_2 \dots p_i M_{p_1 p_2 \dots p_i})$ for $k \leq \omega$ equals

$$\omega - k + 1 + \sum_{i=k+2}^{\omega} (2^{i-k-1} - 1) = 2^{\omega-k},$$

 \mathbf{SO}

8

$$p_{\omega+1}\prod_{i=1}^{\omega}(p_1p_2\dots p_iM_{p_1p_2\dots p_i}) = p_1p_2\dots p_{\omega+1}M_{p_1p_2\dots p_{\omega+1}}$$

It remains to evaluate the constant by using a similar method:

$$\frac{8}{\pi^{3}(\omega+1)} \cdot \prod_{i=3}^{\omega} c_{i} = \frac{8}{\pi^{3}(\omega+1)} \cdot \prod_{i=3}^{\omega} \left(\frac{1}{i} \cdot \left(\frac{2}{\pi}\right)^{3 \cdot 2^{i-3}} \cdot \left(\prod_{k=3}^{i-1} k^{2^{i-1-k}}\right)^{-1}\right)$$
$$= \frac{1}{\omega+1} \cdot \left(\frac{2}{\pi}\right)^{3 \cdot 2^{\omega-2}} \cdot \frac{1}{3 \cdot 4 \cdot \dots \cdot \omega} \cdot \left(\prod_{i=3}^{\omega} \prod_{k=3}^{i-1} k^{2^{i-1-k}}\right)^{-1}$$
$$= \frac{1}{\omega+1} \cdot \left(\frac{2}{\pi}\right)^{3 \cdot 2^{\omega+1-3}} \cdot \left(\prod_{t=3}^{\omega+1-1} t^{2^{\omega+1-1-t}}\right)^{-1} = c_{\omega+1}$$

for $\omega \geq 2$.

Note that $\varepsilon' < \varepsilon$, so by the inductive assumption also $L_{p_1p_2} > (1-\varepsilon)\frac{4}{\pi^2}p_1p_2$ and $L_{p_1p_2...p_i} > (1-\varepsilon)c_ip_1p_2...p_iM_{p_1p_2...p_i}$ for all $3 \le i \le \omega$. It completes the inductive step.

Acknowledgment

The author is partially supported by NCN grant no. 2012/07/D/ST1/02111. The author would like to thank Pieter Moree for the invitation to Max Planck Institute in Bonn and for the good time spent there.

References

- G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number Theory 100 (2003), 104–116.
- [2] P.T. Bateman, C. Pomerance, R.C. Vaughan, On the size of the coefficients of cyclotomic polynomials, Coll. Math. Soc. J. Bolyai 34 (1981), 171–202.
- [3] B. Bzdęga, On the height of cyclotomic polynomials, Acta Arith. 152 (2012), 349–359.
- [4] Y. Gallot, P. Moree, Ternary cyclotomic polynomials having a large coefficient, J. Reine Angew. Math. 632 (2009), 105–125.
- [5] S. Konyagin, H. Maier, E. Wirsing, Cyclotomic polynomials with many primes dividing their orders, Periodica Math. Hungar. 49 (2004), 99–106.
- [6] H. Maier, Anatomy of integers and cyclotomic polynomials, CRM Proc. and Lecture Notes 46 (2008), 89–95.

Adam Mickiewicz University, Poznań, Poland *E-mail address*: exul@amu.edu.pl